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1 The variablesx andy are such thaty = −1 whenx = 1 and

x2 + y2 + (dy
dx
)3 = 29.

Find the values of
dy
dx

and
d2y

dx2
whenx = 1. [5]

2 The curveC has polar equation

r = a(1− e−θ),
wherea is a positive constant and 0≤ θ < 2π.

(i) Draw a sketch ofC. [3]

(ii) Show that the area of the region bounded byC and the linesθ = ln 2 andθ = ln 4 is

1
2a2(ln 2− 13

32). [4]

3 At any point(x, y) on the curveC,

dx
dt

= t
√(t2 + 4) and

dy
dt

= −t
√(4− t2),

where the parametert is such that 0≤ t ≤ 2. Show that the length ofC is 4
√

2. [3]

Given thaty = 0 whent = 2, determine the area of the surface generated whenC is rotated through
one complete revolution about thex-axis, leaving your answer in an exact form. [4]

4 The sumSN is defined bySN =
N

∑
n=1

n5. Using the identity

(n + 1
2)6 − (n − 1

2)6 ≡ 6n5 + 5n3 + 3
8n,

find SN in terms ofN. [You need not simplify your result.] [4]

Hence find lim
N→∞ N−λ SN, for each of the two cases

(i) λ = 6,

(ii) λ > 6.
[3]

5 Let

In = ã e

1
x(ln x)n dx,

wheren ≥ 1. Show that

In+1 = 1
2e

2 − 1
2(n + 1)In. [3]

Hence prove by induction that, for all positive integersn, In is of the formAne2 + Bn, whereAn and
Bn are rational numbers. [6]
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6 The equation

x3 + x − 1 = 0

has rootsα, β, γ . Use the relationx = √
y to show that the equation

y3 + 2y2 + y − 1 = 0

has rootsα2, β2, γ 2. [2]

Let Sn = αn + βn + γ n.

(i) Write down the value ofS2 and show thatS4 = 2. [3]

(ii) Find the values ofS6 andS8. [4]

7 The linesl1 andl2 have vector equations

r = 4i − 2j+ λ (2i+ j − 4k) and r = 4i− 5j+ 2k+ µ(i − j − k)
respectively.

(i) Show thatl1 andl2 intersect. [3]

(ii) Find the perpendicular distance from the pointP whose position vector is 3i− 5j + 6k to the
plane containingl1 andl2. [3]

(iii) Find the perpendicular distance fromP to l1. [4]

8 The matrixA is given by

A =  4 1 −1
−4 −1 4

0 −1 5

 .

Given that one eigenvector ofA is( 1
−2
−1
), find the corresponding eigenvalue. [2]

Given also that another eigenvalue ofA is 4, find a corresponding eigenvector. [2]

Given further that( 1
−4
−1
) is an eigenvector ofA, with corresponding eigenvalue 1, find matricesP

andQ, together with a diagonal matrixD, such thatA5 = PDQ. [6]
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9 (i) Write down the five fifth roots of unity. [2]

(ii) Hence find all the roots of the equation

ß5 + 16+ (16
√

3)i = 0,

giving answers in the formreiqπ, wherer > 0 andq is a rational number. Show these roots on an
Argand diagram. [4]

Let w be a root of the equation in part(ii).

(iii) Show that
4

∑
k=0

(w
2
)k = 3+ i

√
3

2− w
. [3]

(iv) Identify the root for which|2− w | is least. [2]

10 Find the set of values ofa for which the system of equations

x + 4y + 12ß = 5,

2x + ay + 12ß = a − 1,

3x + 12y + 2aß = 10,

has a unique solution. [4]

Show that the system does not have any solution in the casea = 18. [2]

Given thata = 8, show that the number of solutions is infinite and find the solution for which
x + y + ß = 1. [5]
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11 Answer onlyone of the following two alternatives.

EITHER

The variablesß andx are related by the differential equation

3ß2d2ß
dx2

+ 6ß2dß
dx

+ 6ß(dß
dx
)2 + 5ß3 = 5x + 2.

Use the substitutiony = ß3 to show thaty andx are related by the differential equation

d2y

dx2
+ 2

dy
dx

+ 5y = 5x + 2. [3]

Given thatß = 1 and
dß
dx

= −2
3 whenx = 0, findß in terms ofx. [9]

Deduce that, for large positive values ofx, ß ≈ x
1
3. [2]

OR

The curveC has equation

y = x(x + 1)
(x − 1)2

.

(i) Obtain the equations of the asymptotes ofC. [3]

(ii) Show that there is exactly one point of intersection ofC with the asymptotes and find its
coordinates. [2]

(iii) Find
dy
dx

and hence

(a) find the coordinates of any stationary points ofC,

(b) state the set of values ofx for which the gradient ofC is negative.
[6]

(iv) Draw a sketch ofC. [3]
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